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Appendix H:  Additional Details on Benefits Methodologies 

H.1 Methodology Used to Develop Threshold Adjusted Concentration-Response 
Functions 

For mortality and morbidity outcomes associated with short-term exposure to PM2.5, log-linear 
C-R functions are developed based on a continuous function from the epidemiological studies.  
Generally, the lowest measured concentrations in the short-term exposure studies were relatively 
near or below the estimated background levels such that little or no extrapolation of the C-R 
function is required beyond the range of data in the studies.  Among the studies of mortality 
associated with long-term exposure to PM2.5 that have been included in the benefits analysis, the 
lowest measured long-term levels were in the range 7.5 to 11 µg/m3.  For the base cases and 
sensitivity analyses we applied various alternative “cutpoint” models.  While there are likely 
biological thresholds in individuals for specific health responses, the available epidemiological 
studies do not support or refute the existence of thresholds at the population level for either long-
term or short-term PM exposures within the range of air quality observed in the studies.  It may 
therefore be appropriate to consider health risks estimated not only with the reported linear or 
log-linear C-R functions, but also with modified functions that approximate non-linear, 
sigmoidal-shaped functions that would better reflect possible population thresholds.  We 
approximated such sigmoidal functions by “hockeystick” functions based on the reported linear 
or log-linear functions.  This approximation consisted of (1) imposing a cutpoint (i.e., an 
assumed threshold) on the original C-R function, that is intended to reflect an inflection point in 
a typical sigmoidal shaped function, below which there is little or no population response, and 
(2) adjusting the slope of the original C-R function above the cutpoint.  This approach mirrors 
the approach used in the Particulate Matter Health Risk Assessment (Post et al., 2005). 

If the researchers in the original study fit a log-linear or a linear model through data that actually 
better support a sigmoidal or “hockeystick” form, the slope of the fitted curve would be smaller 
than the slope of the upward-sloping portion of the “true” hockeystick relationship, as shown in 
Figure H-1a.  The horizontal portion of the data below the cutpoint would essentially cause the 
estimated slope to be biased downward relative to the “true” slope of the upwardsloping portion 
of the hockeystick.  The slope of the upward-sloping portion of the hockeystick model should 
therefore be adjusted upward (from the slope of the reported C-R function), as shown in 
Figure H-1a.  This rationale applies equally in the case of mortality associated with long- and 
short-term exposure to PM.  In each case, under the threshold hypothesis a log-linear curve has 
been fit to data that are better characterized by a hockeystick model.  In the case of a short-term 
exposure mortality or morbidity study, the curve represents the relationship between daily PM 
and daily mortality or morbidity; in the case of a long-term exposure mortality study, the curve 
represents the relationship between annual average PM and annual mortality.  In both cases, 
however, if the “true” relationship looks like a hockeystick, then the log-linear curve fitted to the 
data would understate the impact of increases in PM (either daily, in the case of a short-term 
study, or annual average, in the case of a long-term study) on mortality or morbidity at PM levels 
above the cutpoint. 
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Figure H-1a. Relationship Between Estimated Log-Linear Concentration-Response Function 

and Hockeystick Model 
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Figure H-1b. Relationship Between Estimated Log-Linear Concentration-Response Function 

and Hockeystick Model 
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If the data used in a study do not extend down below the cutpoint or extend only slightly below 
it, then the extent of the downward bias of the reported PM coefficient will be minimal.  This is 
the case, for example, when the cutpoint is 10 µg/m3 or 12 µg/m3 for long-term exposure 
mortality, given that the lowest measured PM2.5 levels in the long-term exposure mortality 
studies were 7.5, 10, or 11 µg/m3.  In this case, the data in the study provided hardly any 
information about the relationship between PM2.5 and mortality at levels below the cutpoints and 
would have biased an estimate of the slope of the upward-sloping portion of a hockeystick only 
minimally if at all, as illustrated in Figure 2.1b. 

We used a simple slope adjustment method based on the idea discussed above—that, if the data 
in the study were best described by a hockeystick model with a cutpoint at c, then the slope 
estimated in the study using a log-linear model would be approximately a weighted average of 
the two slopes of the hockeystick—namely, zero and the slope of the upward-sloping portion of 
the hockeystick.  If we let 

LML denote the lowest measured PM level in the study, 

c denote the cutpoint, 

HML denote the highest measured PM level in the study, 

βest denote the slope (the PM coefficient) estimated in the study (using a loglinear model), 
and 

βT denote the “true” slope of the upward-sloping portion of the hockeystick, 

then, assuming the estimated coefficient reported by the study is (approximately) a weighted 
average of the slope below the cutpoint (0) and the slope above the cutpoint, 

  

and, solving for β T, 

  

That is, the “true” slope of the upward-sloping portion of the hockeystick would be the slope 
estimated in the study (using a log-linear model rather than a hockeystick model) adjusted by the 
inverse of the proportion of the range of PM levels observed in the study that was above the 
cutpoint.  Note that if the LML was below the estimated background level (or if it was not 
available for the study), the estimated background level was substituted for LML in the above 
equation.  We believe that this slope adjustment method is a reasonable approach to estimating 
health effects under various assumed cutpoint models.  A more definitive evaluation of the 
impact of alternative cutpoints and non-linear models is a subject that should be explored in 
further research. 
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H.2 Spatial Interpolation Method:  Voronoi Neighbor Averaging 

The first step in VNA is to identify the set of neighboring monitors for each grid cell in the 
Continental United States.  The figure below presents nine grid cells and seven monitors, with 
the focus on identifying the set of neighboring monitors for grid cell E. 
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In particular, BenMAP identifies the nearest monitors, or “neighbors,” by drawing a polygon, or 
Voronoi cell, around the center of each grid cell.  The polygons have the special property that the 
boundaries are the same distance from the two closest points. 
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We then choose those monitors that share a boundary with the center of grid cell E.  These are 
the nearest neighbors, and we use these monitors to estimate the air pollution level for this grid 
cell. 
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To estimate the air pollution level in each county, BenMAP calculates the PM metrics for each 
of the neighboring monitors, and then calculates an inverse-distance weighted average of the 
metrics.  The further the monitor is from the grid cell center, the smaller the weight. 
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The weight for the monitor 30 kilometers from the center of grid cell E is calculated as follows: 
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The weights for the other monitors would be calculated in a similar fashion.  BenMAP would 
then calculate an inverse-distance weighted average of the nearest neighbors for grid cell E as 
follows: 

 Forecast = 0.35*80 µg + 0.23*90 µg+ 0.23*60 µg + 0.19*100 µg = 81.5 µg. 

H.3 The Random/Fixed Effects Pooling Procedure 

A common method for weighting estimates involves using their variances.  Variance takes into 
account both the consistency of data and the sample size used to obtain the estimate, two key 
factors that influence the reliability of results.  The exact way in which variances are used to 
weight the estimates from different studies in a pooled estimate depends on the underlying model 
assumed. 

The fixed effects model assumes that there is a single true concentration-response relationship 
and therefore a single true value for the parameter $.  Differences among $’s reported by 
different studies are therefore simply the result of sampling error.  That is, each reported $ is an 
estimate of the same underlying parameter.  The certainty of an estimate is reflected in its 
variance (the larger the variance, the less certain the estimate).  Pooling that assumes a fixed 
effects model therefore weights each estimate under consideration in proportion to the inverse of 
its variance. 
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Suppose there are n studies, with the ith study providing an estimate $i with variance vi (I = 1, ..., 
n).  Let 

 ∑=
i iv

S 1 , 

denote the sum of the inverse variances.  Then the weight, wi, given to the ith estimate, $i, is 
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This means that estimates with small variances (i.e., estimates with relatively little uncertainty 
surrounding them) receive large weights, and those with large variances receive small weights. 

The estimate produced by pooling based on a fixed effects model, then, is just a weighted 
average of the estimates from the studies being considered, with the weights as defined above.  
That is, 

 ∑=
i
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The variance associated with this pooled estimate is the inverse of the sum of the inverse 
variances: 
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An alternative to the fixed effects model is the random effects model, which allows the 
possibility that the estimates $i from the different studies may in fact be estimates of different 
parameters, rather than just different estimates of a single underlying parameter.  In studies of the 
effects of ozone on mortality, for example, if the level of air conditioning use varies among study 
locations the underlying relationship between mortality and ozone may be different from one 
study location to another.  If air conditioning use causes individuals to stay inside more on days 
with high ozone, then the mortality risk may be lower in areas with high prevalence of air 
conditioning.  As such, one would expect the true value of $ in cities with low air conditioning 
prevalence to be greater than the true value of $ in cities with high air conditioning prevalence.  
This would violate the assumption of the fixed effects model. 

The following procedure can test whether it is appropriate to base the pooling on the random 
effects model (vs. the fixed effects model): 

A test statistic, Qw, the weighted sum of squared differences of the separate study estimates from 
the pooled estimate based on the fixed effects model, is calculated as: 
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Under the null hypothesis that there is a single underlying parameter, $, of which all the $i ‘s are 
estimates, Qw has a chi-squared distribution with n-1 degrees of freedom.  (Recall that n is the 
number of studies in the meta-analysis.) If Qw is greater than the critical value corresponding to 
the desired confidence level, the null hypothesis is rejected.  That is, in this case the evidence 
does not support the fixed effects model, and the random effects model is assumed, allowing the 
possibility that each study is estimating a different $. 

The weights used in a pooling based on the random effects model must take into account not 
only the within-study variances (used in a meta-analysis based on the fixed effects model) but 
the between-study variance as well.  These weights are calculated as follows: 

Using Qw, the between-study variance, 02, is: 
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It can be shown that the denominator is always positive.  Therefore, if the numerator is negative 
(i.e., if Qw < n-1), then 02 is a negative number, and it is not possible to calculate a random 
effects estimate.  In this case, however, the small value of Qw would presumably have led to 
accepting the null hypothesis described above, and the meta-analysis would be based on the 
fixed effects model.  The remaining discussion therefore assumes that 02 is positive.   

Given a value for 02, the random effects estimate is calculated in almost the same way as the 
fixed effects estimate.  However, the weights now incorporate both the within-study variance (vi) 
and the between-study variance ( 02).  Whereas the weights implied by the fixed effects model 
used only vi, the within-study variance, the weights implied by the random effects model use vi 
+02.   

Let vi* = vi +02.  Then 

 ∑=
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The estimate produced by pooling based on the random effects model, then, is just a weighted 
average of the estimates from the studies being considered, with the weights as defined above.  
That is,  
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The variance associated with this random effects pooled estimate is, as it was for the fixed 
effects pooled estimate, the inverse of the sum of the inverse variances: 
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The weighting scheme used in a pooling based on the random effects model is basically the same 
as that used if a fixed effects model is assumed, but the variances used in the calculations are 
different.  This is because a fixed effects model assumes that the variability among the estimates 
from different studies is due only to sampling error (i.e., each study is thought of as representing 
just another sample from the same underlying population), while the random effects model 
assumes that there is not only sampling error associated with each study, but that there is also 
between-study variability—each study is estimating a different underlying $.  Therefore, the sum of the 
within-study variance and the between-study variance yields an overall variance estimate. 

Weights can be derived for pooling incidence changes predicted by different studies, using either 
the fixed effects or the random effects model, in a way that is analogous to the derivation of 
weights for pooling the $’s in the C-R functions.  For a given change in pollutant level and a 
given baseline incidence rate, corresponding to every possible value of $, there is an incidence 
change.  Corresponding to $i, with variance vi (calculated from the reported standard error of $i,) 
from the ith study, there is therefore an estimate of incidence change, Ii, with variance v(I)i.  In 
practice, we generate a sample mean and a sample variance of incidence changes by calculating 
an incidence change for each of many $’s pulled from the distribution of $’s for the study. 

This can be done either using Monte Carlo methods (making many random pulls) or by a Latin 
Hypercube approach, in which we pull the nth percentile $ from the distribution of $’s, for, e.g., 
n = 2.5, 7.5, ..., 97.5.  Either way, the result is a corresponding sample distribution of incidence 
changes that would be predicted by the study, from which we calculate the sample mean and the 
sample variance.  The sample means of incidence change from the studies to be pooled are used 
in exactly the same way as the reported $’s are used in the discussion of fixed effects and 
random effects models above.  The sample variances of incidence change are used in the same 
way as the variances of the $’s.  The formulas above for calculating fixed effects weights, for 
testing the fixed effects hypothesis, and for calculating random effects weights can all be used by 
substituting the sample mean incidence change for the ith study for $i and the sample variance of 
incidence change for the ith study for vi.   

 


